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ABSTRACT 

We de t e rmine  the  s t ruc tu re  of  finitely genera ted  residually finite g roups  

in which  the  n u m b e r  of  s u b g r o u p s  of each finite index n is b o u n d e d  by a 

fixed power  of  n.  

Introduction 

Let G be a finitely generated group. The number an(G) of subgroups of G of 

index n is a non-negative integer, and a natural problem, first suggested in IS1], 

is to investigate this number theoretical function. If F is the finite residual of 

G, namely the intersection of all subgroups of G of finite index, then an(G) = 
an(G/F), so there is no real loss in assuming that F = 1, i.e. that  G is a 

residually finite group. In this note we consider the simplest growth condition of 

an(G), proving, 
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THEOREM: A t~ni~ely generated residually finite group G satist~es an(G) ~_ n s, 

for some s, if and only if G is virtually soluble of ~ni~e rank. 

Groups satisfying the growth assumption of the Theorem will be referred to 

as p o l y n o m i a l  s u b g r o u p  g r o w t h  g roups  (PSG groups for short). We recall 

that G is v i r t ua l ly  X, for some class X of groups, if G contains an X-subgroup 

of finite index, and that G has finite r a n k  r, if each finitely generated subgroup 

of G can be generated by r elements. Finitely generated soluble groups of finite 

rank form a well-understood class of groups, coinciding with the finitely generated 

soluble minimax groups, i.e. those having a normal series with factors satisfying 

either chain condition [R]. 

That soluble groups of finite rank, even if not finitely generated, are PSG, 

was already noted in [$1]. The converse was established in [LM3] and [MS], 

provided certain other assumptions are satisfied. It turned out that only a little 

further argument is needed to prove the Theorem in full, and this is done here. 

The complete proof employs diverse tools, such as the theory of algebraic and 

arithmetic groups and of linear groups in general, the theory of p-adic analytic 

groups and of infinite soluble groups, the classification of the finite simple groups, 

and the Prime Number Theorem. Therefore, rather than being satisfied with 

giving only the few arguments that have to be proved in full in this paper, we 

have taken the opportunity to describe the overall structure of the proof in some 

detail, referring to the earlier papers for complete proofs. This was considered 

advisable also because the earlier papers contain, on the one hand, some special 

cases of the Theorem that are now superfluous, even as intermediate stages in 

the proof, and, on the other hand, some other results. Thus the present paper 

serves also as an introduction to [LM3] m~d [MS]. While we have to mention that 

a similar description cml be found in [DDMS], we note that the two descriptions 

are complementary, rather than repetitive. 

Before proceeding with our description, let us mention a few problems whose 

investigation seems indicated now. First, a further investigation of an(G). It 

was suggested in [GSS] to encode this function in a Dirichlet series (G(8) = 

an(G)n -~. This series converges (somewhere) exactly when G is a PSG group. 

In the simplest case, namely an infinite cyclic group, we obtain the classical 

Riemann zeta function, and in some other cases (G(S) can be expressed in terms 

of this function [GSS, I]. Rationality results for the "local factors" of (G(8) are 

proved in [GSS] and [dS1] for certain classes of groups, including the class of all 
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virtually soluble groups of finite raalk. Very little is known about the abscissa of 

convergence of ~v(s), i.e. the exact exponent of polynomial growth of an(G). 
Next, there is the question of the other possible growths of an(G). The proof 

below works also for growth somewhat bigger than polynomial. For pro-p groups 

nlOg n is the minimal non-polynomial growth, according to [Sh], while the maximal 

growth, i.e. the subgroup growth of free pro-p groups, is exponential [I]. The 

maximal growth for discrete groups is even bigger [Ne]. The first author has 

recently shown that aanong arithmetic groups of characteristic 0, the ones with 

the congruence subgroup property are characterized by their subgroup growth, 

which is about n (l°g ,,)/(loglog ,). 

Finally, we can consider non-filfitely-generated PSG groups. Some of the re- 

suits of [MS] quoted below hold also in tiffs case, but the Theorem does not, and 

examples given in that paper (see also [$1]) suggest that such groups are unlikely 

to have a simple characterization. Some filrther results for this case are derived 

in [M2]. 
This paper is one of several recent ones in which Lazard's theory of p-adic 

analytic groups ([La]; see also [LM1] and [DDMS]) serves as a link, enabling us 

to use recent advances in finite group theory to reduce problems about residually 

finite groups to one about linear groups. This rests on the linearity theorem of 

[Lu], which in turn applies [LM1], relying ultimately on some results about finite 

p-groups. We mention also the papers [LM2] and [Wi], and the survey papers 

[M1], [$2], and [dS2]. 

1 .  L i n e a r  G r o u p s  

The assumption of polynomial subgroup growth is always applied in the follow- 

ing way. We find in G subgroups of finite index H and K,  with K ,~ H and 

H/K an elementary abelian p-group (for some prime p) of rank r, say. We then 

know exactly how many subgroups of each index occur between H and K.  The 

construction should be such that we have a reasonable upper bound on [G : H[. 

Then the PSG assumption provides a bound on r, and this either yields a con- 

tradiction or carries us further in the argument. 

The main contribution of [LM3] is the proof of the Theorem for linear groups, 

with most of the work expended in the characteristic 0 case. 

Let, then, G be a finitely generated subgroup of GL(n, F),  for some n, and 

some field F of characteristic 0. The Hilbert Nullstellensatz shows that G is 
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residually linear of degree n over the field K of algebraic numbers. The PSG 

condition is transferred from G to its quotient groups in GL(n, K), mad it suffices 

to know that these quotient groups are soluble by finite, because then they are 

soluble of bounded length by finite of bounded order (see e.g. [We], Corollary 

10.11; this is a combination of a theorem of Zassenhans on soluble linear groups 

of Jordan's theorem on finite linear groups). 

We thus assume that G is a subgrou I) of GL(n, K). Since G is finitely generated, 

it is contained in a group GL(n, L), where L is a finitely generated subfield of K, 

and thus ]L : QI < oo. Chaaaging n, we may assume that G _ GL(n, Q). Finally, 

again because G is finitely generated, we may assume that G < GL(n, R), where 

R = Z[1/p~,.. . ,  1/pk] is a finitely generated ring over Z. 

At this stage we caal produce some subgroups of finite index. Indeed, if m is 

a natural number not divisible by may of the primes pl , - . - ,  pk, then the princi- 

pal congruence subgroup (rood m), i.e. the kernel of the homomorphism G 

GL(n, R/mR), has finite index. However, we still do not have enough control on 

these images to estimate their number. The situation becomes better on passing 

from G to its Zariski closure G (in GL(n, R)). If G is not soluble by finite, we 

can replace it by an image of the form A(R), where A is a semi-simple algebraic 

group defined over Q, mad a little further argument allows us to assume that A is 

also connected and simply connected (the reader can think about A = SL(n,-)  
as a typical example). The factor group of this group over its principal congru- 

ence subgroup is now the full group A(R/mR). Decomposing this group as a 

direct product of groups A(R/qR), with q being a prime power, and using the 

fact that this latter group is (almost always) of even order, we can produce, using 

the Prime Number Theorem (a weak version suffices), enough such finite images, 

estimate their orders mad number, and construct big enough elementary abelian 

2-groups in them, to show that G is not a PSG group. 

The snag in this procedure is that G and G do not necessarily share the same 

finite quotients. Therefore we introduce also G, the congruence closure of G, 

i.e. the closure under the topology of GL(n, R) induced from the topology of R 

with ideals mR as a basis of neighborhoods of 0. Then G and G do have the 

same image in GL(n, R/mR), indeed G can be defined as the largest subgroup of 

GL(n, R) having these images. Finally, the crucial observation is that the Strong 

Approximation Theorem of [MVW] and [No] shows that G has finite index in 

G, and therefore the counting procedure employed above for G applies also to 
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and G, and, unless all three of these groups are soluble by finite, produces a 

contradiction. Once we know that our group is virtually soluble, the fact that 

it has finite rank follows from IS1], or by an argument of the type described in 

Section 2 below. 

2. Residually Soluble Groups 

The next stage is the case of a residually-p group G, and this is where the theory 

of p-adic analytic groups comes in. We form the pro-p completion Gp of G, which 

is a PSG pro-p group. In such a group we consider all sections of the type H/K 
mentioned above. It follows that the ranks of these sections are bounded, and 

hence p rop  PSG groups are p-adic analytic groups, by [LM1]. This implies that 

Gp is linear over the p-adic field Qp, and the previous case applies. 

Though it is not needed for the continuation of the proof, we remark that at 

this stage we also have the proof for the case of linear groups of characteristic 

p, because they are virtually residually-p. This forms an interesting instance of 

non-standard lifting from a finite characteristic to chaxacteristic 0. 

In [MS] this is extended to residually (finite soluble) groups. A more elaborate 

counting argument shows that if G is a PSG group, there exists a number r such 

that the ranks of all finite soluble images of G are bounded by r. If we assume 

that all finite images of G are soluble (an ~ssumption that will be justified later), 

we see that G is what we call of finite u p p e r  rank ,  i.e. the ranks of all of its 

finite images are bounded (equivalently, the profinite completion of G is of finite 

rank). It is shown in Theorem A of [MS] that finitely generated groups of finite 

upper rank are virtually soluble of finite rank. It is at this stage that the theory 

of infinite soluble groups is needed (this proof is described in detail in section 6.2 

of [DDMS]). 

3. Chief Factors 

Given the list of finite simple groups, it is not difficult to show that they all con- 

tain relatively big elementary abelian subgToups. Now let H/K be a finite chief 

factor of a group G. Suppose that H/If is not abelian, and consider the factor 

group G/C, where C = CG(H/If). This is the grou I) of automorphisms that  G 

induces on H/K, and since H/K is not abelian, this group of automorphisms 

includes the inner automorphisnls, a subgroup isomorphic to H/K. Replacing 

H/K by this group of inner automorphisms, we not only can assume that IG : H I 
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is finite, we also get a reasonable bound on this index, and this enables us to play 

our usual game and establish the following result (Theorem 4.1 of [MS]). 

PROPOSITION OF: Let G be a PSG group. Then there exists a number n such 

that, i f  H / K  is a non-abelian finite chief factor of G, then H / K  is a direct 

product of at most n isomorphic finite simple groups, these simple groups being 

either sporadic, alternating of degree at most n, or of Lie type of (Lie) rank at 

most n, over a finite field of dimension at most n over its prime subfield. 

Unfortunately, this still leaves us with possibly infinitely many such chief fac- 

tors, as we do not say anything about the characteristic of the groups of Lie type, 

and if G is not finitely generated, there are examples involving infinitely many 

non-isomorphic chief factors. We do get the following (see the proof of Theorem 

D of [MS]). 

COROLLARY: For a PSG group G, there exists a number m, such that for any 

finite chief factor H / K  of G, the automorphism group of H / K  has a faithful 

representation of degree at most m over some finite field. 

This is used in [MS] to prove a special case of the Theorem. The new ingredient 

that enables us to prove the full result is the following simple, but crucial, lemma, 

which is a variant of an argument that appears in [Wi].* 

LEMMA: Let G be a finitely generated group, n a positive integer, and ~ a family 

of fields. I f  G can be embedded in the Cartesian product 1-I GL(n, F ) ( F  E 

fl), then G is a subdirect product of finitely many linear groups of degree n. 

I f  moreover ~ contains only finite]y many t]elds of each positive characteristic, 

and these are finite, then G is isomorphic to a / /nea r  group over some field of 

characteristic O. 

Proof'. Let S be the ring 11 F (F  E ~). Then G < GL(n, S). Since G is finitely 

generated, it follows that G <GL(n,  R), for solne finitely generated subring R of 

S. Now R is a commutative Noetherian ring without nilpotent elements, hence 

it contains only finitely many minimal prime ideals, say P 1 , . . . ,  Pt, and these 

intersect in 0. Thus GL(n, R) ca~ be embedded in 1-I GL(n, K~), where K~ is the 

field of fractions of the domain R/Pi .  The first claim of the lemma is proved. 

* See Lemma 4.2 there. The authors are grateful to the author of [Wi] for permission 
to quote that paper prior to publication. As mentioned, [Wi] is generally relevant 
to our line of ideas, containing substantial improvenmnts of some of the results in 
[LM2] and [MS]. 



Vol. 82, 1993 GROUPS OF POLYNOMIAL SUBGROUP GROWTH 369 

For the second claim, assmne that ft has the stated property. Suppose that 

PI,..., Ps are those Pi for which R/Pi has finite characteristic. Let L be their 

intersection, and let M be the intersection of Ps+1,..., Pt. Let q be the product 

of the characteristics of the domains R/PI,..., R/Po. Then qR <_ L, so qM <_ 

L f3 M = 0. The hypotheses on f~ imply that S, and hence R, contains only 

finitely many elements of additive order q. Hence M is finite, and so is the 

kernel K of the projection GL(n, R) ~ H GL(n, R/Pi) (i = s + 1 , . . . ,  t). Thus 

H = GIG f3 K is a product of finitely many linear groups in characteristic 0, and 

hence H is linear in characteristic 0. Now G f3 K is finite and G is residually 

finite, hence G has a subgroup of finite index which is linear in characteristic 0, 

and then G itself is linear in characteristic 0. 

We have arrived at the end of the road. | 

Proof  of the Theorem: Let G be a finitely generated PSG group. Let N be 

the intersection of the centralizers of all the non-abelian finite chief factors of G. 

Proposition CF and its Corollary show that GIN is residually linear of degree m 

over a set of fields as in the Lemma, so this Lemma shows that G/N is a linear 

group of characteristic 0. By the first stage of the proof, GIN is soluble by finite. 

Let M / N  be a soluble normal subgroup of finite index in GIN. If H / K  is a finite 

non-abelian chief factor of G, it is a chief factor of G/C, where C = Ca(H/K),  

and hence also of G/N, and therefore of G/M. If M has any non-abelian finite 

chief factor, such a factor can be embedded in a finite chief factor of G, but such 

factors are centralized by M, a contradiction. This implies that all finite factor 

groups of M are soluble. But M itself is a finitely generated PSG group, so the 

result mentioned in section 3 shows that it is soluble by finite (therefore actually 

soluble) and so is G. 
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